Synaptic and spiking dynamics underlying reward reversal in the orbitofrontal cortex.
نویسندگان
چکیده
Cognitive and emotional flexibility involve a coordinated interaction between working memory, attention, reward expectations, and the evaluation of rewards and punishers so that behaviour can be changed if necessary. We describe a model at the integrate-and-fire neuronal level of the synaptic and spiking mechanisms which can hold an expectation of a reward rule in working memory, and can reverse the reward rule if expected rewards are not obtained. An example of a reward rule is that stimulus 1 is currently associated with reward, and stimulus 2 with punishment. The attractor-based reward rule working memory incorporates a spike-frequency synaptic adaptation mechanism which supports the neural switching between rules by being shut down by a general inhibitory input produced by punishment, so that when the attractor starts up again is in the opposite state. The mechanism can implement one-trial reward reversal, which is a property of orbitofrontal cortex neurons. We show how this reward rule input can operate in a biased competition way to influence which one of two stimuli is currently associated with reward and which with punishment, and to map the stimuli correctly to the reward or punishment representations, providing a basis for action selection required to obtain the reinforcer.
منابع مشابه
Chemosensory Learning in the Cortex
Taste is a primary reinforcer. Olfactory-taste and visual-taste association learning takes place in the primate including human orbitofrontal cortex to build representations of flavor. Rapid reversal of this learning can occur using a rule-based learning system that can be reset when an expected taste or flavor reward is not obtained, that is by negative reward prediction error, to which a popu...
متن کاملThe emotive brain, the noradrenergic system, and cognition
Motivation and attention can have a profound influence on perception, learning and memory. Neuromodulatory systems, especially the noradrenergic (NE) system, co-vary with psychological states to modulate cortical arousal, influence sensory processing and promote synaptic plasticity. There is even some suggestion that the NE system might facilitate functional recovery after brain damage. Post-sy...
متن کاملThe emotive brain, the noradrenergic system, and cognition
Motivation and attention can have a profound influence on perception, learning and memory. Neuromodulatory systems, especially the noradrenergic (NE) system, co-vary with psychological states to modulate cortical arousal, influence sensory processing and promote synaptic plasticity. There is even some suggestion that the NE system might facilitate functional recovery after brain damage. Post-sy...
متن کامل(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex
Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...
متن کاملA non-reward attractor theory of depression.
A non-reward attractor theory of depression is proposed based on the operation of the lateral orbitofrontal cortex and supracallosal cingulate cortex. The orbitofrontal cortex contains error neurons that respond to non-reward for many seconds in an attractor state that maintains a memory of the non-reward. The human lateral orbitofrontal cortex is activated by non-reward during reward reversal,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cerebral cortex
دوره 15 1 شماره
صفحات -
تاریخ انتشار 2005